The Bialowieza Forest threatened by extensive logging in 2016-2021

On March 25, 2016 Polish Minister of Environment, prof. Jan Szyszko, took the decision to implement the Annex to the Forest Management Plan of the Bialowieza forest district (188,000 m3 of wood will be harvested in this district). He also announced the implementation of similar actions regarding two other forest districts (Browsk and Hajnowka) in the Bialowieza Forest for 2016-2021. Thus he allowed intensive logging in the most precious forest of the European lowland being the UNESCO World Heritage Site and the Natura 2000 site. Minister ignored negative opinions of numerous universities, Polish Academy of Sciences, Polish National Council of Nature Conservation, and non-governmental organisations. He also neglected over 120,000 signatures of people protesting against logging intensification.

The link to the information about the decision about logging increase in the Bialowieza Forest on the website of the Ministry of Environment 

English translation of the information:
- For some time in the Bialowieza Forest there is a very disquieting process - the disappearance of natural habitats, dying forests. This crisis has affected most of spruce trees. The number of dead spruce trees in the forest are already counted in millions. Along the degradation of habitats, the occurrence of valuable, protected species of fauna and flora decreases - said at today's press conference prof. Szyszko. Minister of Environment and Dr. Konrad Tomaszewski, Director General of State Forests announced the "Program for the Bialowieza Forest as a cultural heritage and natural UNESCO site and the Natura 2000 site" that helps restoring of natural habitats and halt their disappearance in the Bialowieza Forest.
The programme consists of two parts:
The first one covers compiling and presenting to public opinion all documents including legal and management rules, press articles and letters concerning the Bialowieza Forest, which were sent to the Ministry of Environmet and the State Forest Service.
The second part is a reserach&monitoring programme, financed by the State Forest Service, which, amongst other, will designate 1/3 of the area of these three forest districts existing in the Bialowiea Forest, which will be left without human intervention. On the rest (2/3) of the area of the managed part of the Bialowiea Forest is obligatory immediately proceed to remedy the current situation, ie. to the full restoration of natural habitats. This activity will show how to protect the forest: is it better to leave it without intervention, whether it should be managed, using methods of active conservation.
In frame of this Programme the full natural resources documentation of each part of these three forest districts is planned. The inventory of HD habitats and species will be conducted by staff of local forest districts. - We start a big inventory of natural resources of the Bialowieza Forest. Its result will be to create a map of biodiversity - said Konrad Tomaszewski, Director General of State Forests.


Here is the full text of the "Programme for the Bialowieza Forest" in Polish and in English

One of the "Methods of active conservation and restoration of HD habitats" proposed by the State Forests was presented during the field trip for Polish parliamentarians in the Bialowieza Forests, 15th of March 2016. It included: clearcut on several hectares with leaving 10-20 Scots pine trees, one oak in the middle and one lime tree on the side of the plot, removing tree roots, deep ploughing the soil, harrowing the soil, fencing the area and allowing natural regeneration from the remaining pine, oak and lime trees.


The Bialowieza Forest: Facts and numbers

The Bialowieza Forest (ca. 1,500 km2) is the last remains of primeval deciduous forest of the northern temperate zone in Europe. Various forest types of high structural diversity create an exceptional biodiversity where more than 5,500 plants, and 11,564 animal species have been recorded. This forest complex holds the largest population of the European bison and two large carnivores: wolf and lynx. Bird communities include rare species of woodpeckers, owls and hole-nesting songbirds that depend on old growths and standing dead trees. It is a unique biodiversity hotspot and extremaly important source of scientific knowledge, particularly for ecological processes. It represents a very significant and needful ecological blueprint for restoration of forests in Europe and other regions of the world.

The Bialowieza Forest is divided between Belarus (ca. 870 km2, almost entirely protected as a National Park „Belovezhskaya Pushcha”) and Poland (ca. 630 km2). The Polish part of the Bialowieza Forest (hereinafter PBF) is managed by the Bialowieza National Park (only 17% of PBF) and the State Forest Service (remaining 83% of PBF).

The Bialowieza National Park was established in 1932 and that time covered only 47 km2. After a campaign of Polish NGOs and scientists to expand the national park for the entire area of PBF, the park was enlarged to 105 km2 in 1995 and the ban on logging of all old-growth stands outside the park was declared. All forests within the national park are protected. The Bialowieza National Park was inscribed on the World Heritage List in 1979 and extended to include the Belarusian part in 1992. In 2014, as a result of a request of local communities, the Białowieża National Park, scientists and foresters, UNESCO accepted a large extension of the property of 1418.85 km2 with a buffer zone of 1667.08 km2. According to UNESCO description: The area has exceptionally conservation significance due to the scale of its old growth forests, which include extensive undisturbed areas where natural processes are on-going.

Despite high natural values of the entire PBF and ongoing requests of scientists, environmentalist and NGOs to protect the entire forest, majority of the area is still managed by the Polish State Forest Service. The managed part of PBF is divided into three forest districts: Bialowieza (123 km2 , 19% of PBF), Browsk (204 km2, 32.5% of PBF) and Hajnowka (196 km2 , 31.5% of PBF).



In 2008 whole are of BF (630.7 km2) was designated as a Natura 2000 site PLC200004 Puszcza Białowieska.




What is the threat?

For all three forest districts in PBF the forest management plans (FMP) for 2012-2021 have been accepted by the Minister of Environment in 2012. The FMP for the Bialowieza Forest District assumed that a total of 63,471 m3 of wood will be cut within 10 years. It included 771 m3 of large-size timber wood, and 62,700 m3 of young trees. This harvest limit was based on estimates and prognosis of the Bialowieza Forest Advisory Council established by the former Polish President RP Lech Kaczyński in 2006, and agreed during negotiations with all involved parties (State Forest Service, local communities, scientists, etc).

In spite of initial agreement, during 2012-2015 the Bialowieza Forest District logged 57,000 m3 of wood (90% of the harvest limit). Thus, in autumn 2015, the Regional Directorate of Forest Service in Bialystok (being a regional agency of the State Forest Service) developed the Annex (update), to the FMP for the Bialowieza Forest District. This Annex assumes a significant increase of the harvest limit for the next 6 year (until 2021), namely logging of 260,000 m3 of wood, which is fivefold more than in the FMP planned for the entire decade. What is even worse, the new plan foresees logging of 198,900 m3 of large-size timber wood, partly in old-growth forests, what is 258 fold more than planned for initial FMP from 2012 to 2021.  

The new area of logging in the Bialowieza Forest District includes 78 km2 (63,5 % of the area of forest district, rest 34% are nature reserves where logging is forbidden). The logging area will cover: 34% of old-growth and 8,5% of coniferous forests, which are overgrown by the endangered forest habitat – bog woodland (91D0) included to Annex I of the Habitats Directive. The planned logging in the Bialowieza Forest District will cover 20% of all old-growths, which survived in Polish part of the Bialowieza Forest.

The acceptance of the Annex for the Bialowieza Forest District by the Minister of Environment will open a door to accept similar updates of FMPs for the Browsk and Hajnówka forests districts. This will be a comeback of regular forest management practices typical for all ordinary managed forests across Poland.

Recently (February, 17th) the Regional Directorate for Environmental Conservation, a governmental agency responsible for management and introduction of nature conservation plans for Natura 2000 sites in NE Poland, issued a proposal to the Annex. It aimed to set up the harvest limit on 188,000 m2 of spruce stands infested by bark beetles and to restrict the logging area to 8% of the Polish part of the Bialowieza Forest. However, it is still threefold more than the hitherto harvest limit and the announcement of acceptance for next planned updates, which cover much bigger part of PBF than the Bialowieza district. Thus, when the proposal will be accepted, as well as two next updates, 30-35% of the area of the Natura 2000 site Puszcza Bialowieska will be a subject of spruce stands logging. 

Opinions of Polish Nature Conservation and Scientific bodies and different experts

In November 2015 the State Council for Nature Conservation in Poland passed an official statement against the planned increase in forestry activities in the Bialowieza Forest. This was followed by similar statements of the Committee for Nature Conservation of the Polish Academy of Sciences and the Scientific Council of the Bialowieza National Park.

According to the Polish State Forest Service and scientists from institutions connected with the State Forest Service this significant increase of harvest limit is the only way to hamper the on-going bark beetle outbreak and to save spruces not infested by these insects. In opinion of researches conducting studies in this unique forest, nature conservation organisations and environmentalists, the “anti-bark beetle battle” is nothing more than a pretext to retreat from the previously accepted conservation strategy, and start to gain a substantial income from the forest management in the Bialowieza Forest.

The report presented below has been prepared by 17 Polish researchers (biologists and foresters from 12 independent institutions) who conducted studies in the Bialowieza Forest for the last decades. They shared their vast knowledge and results of their research (most already published) regarding the importance of decaying spruces for number of rare species and the impact of planned spruce logging and removal on biodiversity of the Bialowieza Forest. The list authors and institutions as well as publications are included at the end of the report.  

Why the Bialowieza Forest needs dead spruces?

Climate changes also affect European forests. Some species of trees, like Norway spruce Picea abies, are sensitive to high temperatures and water deficiency. After having been weakened by summer droughts they become vulnerable to more intensive colonization of tree-eating insects. Spruce trees which become infested by the European spruce bark beetle die and are replaced by deciduous tree species that are better adapted to current environmental conditions. This change in the tree species composition is a natural process and there is no danger for sustainability of the forest ecosystem. The forest is still alive, although the tree species composition is drastically changing. It also looks different from several years or decades ago. Very often we find it difficult to get used to the view of dead spruces trunks protruding from the thicket of young trees or a tangle of logs lying on the ground that make it more difficult to move around the forest. However, this does not mean it is an "inferior forest" or a "dead forest", rather it is the opposite and the forest is bursting with life!

If the forest is dominated by spruce stands, the "dieback" process of trees may become massive. This situation is now occurring in many places in Poland such as the western-most part of the Carpathians and also in some parts of the Bialowieza Forest. We may be tempted to interfere in the same way as with commercial forests, which means to log dying spruce, put them in wood depots, sell them and to clear and plough the soil. Afterwards, grow seedlings in nurseries according to the Forest Service instructions, plant them and protect them with every possible method against herbivore browsing and take care of them to achieve a new tree stand in several decades.

But is this a good decision? The Bialowieza Forest is the best preserved deciduous and mixed forest in Europe. Considering the exceptional character of the Bialowieza Forest and the 500 year-old history of protection, shouldn’t we let the current forest, that contains predominantly coniferous trees, convert gradually by natural processes to a forest with a predominance of oaks, hornbeams, limes and other deciduous trees? Isn’t the desire of interference a result of financial incentives or a wrong belief that the forest will die without the help of a human?

Research in spruce-dominated forests proved that the dynamics and increase of the spruce bark beetle population is not much different in areas where the fight against it was conducted by taking every possible measure and in the areas where no measures were taken (Grodzki et al. 2006). Removing the trees that have been infested by spruce bark beetle or have died for different reasons is not an effective method against stopping the outbreak of the bark beetle population and dieback of the trees. Moreover, it may give the opposite effect: reduction of natural processes may increase the population and accelerate the disappearance of spruce forests because in the entire Bialowieza Forest it is not possible to fell a sufficient percentage of infested trees (e.g. Fahse and Heurich 2011).

Currently, we have a huge knowledge concerning the positive role that dead wood plays in the forest, its impact on the forest microclimate, availability of water and promotion of biodiversity. Supply of woody detritus is vital for the energy flow between different levels of the trophic food chain. Detritus provides nourishment for a number of organisms. Logging and removing of dead trees impoverishes terrestrial and aquatic ecosystems and reduce biodiversity. It can also decrease the moisture content in the forests and increase the occurrence of frequent fires (Fleituch 2010). Dead wood is a characteristic feature of natural forests. Deprived of dead wood, forests lose their natural character and resemble commercial forests.
Below we present a list of the losses to nature that felling and removing dying trees from the forest will cause and a list of benefits of non- interference in this process.

By felling and removing dying trees we lose, inter alia:

  1. A chance for more efficient, faster, natural and diverse forest regeneration (as the examples of other places in Europe show: Loch et al. 2001, Jonašova and Prah 2004, Jonášová and Matìjková 2007, Jonašova and Prah 2008, Müller et al. 2008, Müller et al. 2010, Čižkova et al. 2011, Lehnert et al. 2013, Beudert et al. 2015).
  2. A place for the creation and spreading of "biological weapons" against bark beetles. Some of predatory insects living in dead spruce are natural enemies of bark beetles. They are attracted to spruces infested with bark beetles by a pheromone that is produced by male bark beetles at the moment of colonizing a tree. A big cluster of dying spruce that host bark beetles become a place of intensive proliferation of predacious and parasitic insects which then spread across larger areas to search for their prey. (Gutowski and Krzysztofiak 2005, Montano et al. 2016).
  3. Places in the Białowieża Forest where oaks naturally regenerate (Bobiec et al. 2011, Bobiec and Bobiec 2012, Bobiec 2013). The more spruces die and the larger the territory of stands infested by bark beetle is, the faster and more numerous is natural regeneration of oak. In other places dominated by deciduous stands the growth of oak seedling is hindered by the mass regeneration of more shade-tolerant tree species.  
  4. Habitat of many species of lichens and bryophytes. The biggest groups amongst the Białowieża Forest relicts are: epiphytic lichens and bryophytes (growing mainly on trees) and epixylic ones (growing mainly on decaying wood, Cieśliński et al. 1996). Spruce trees are very good hosts for species of genus Bryoria and Usnea being on the brink of extinction in Europe. In the Bialowieza Forest the presence of 90 species living on spruce were recorded, among them species locally extinct in Poland, like Usnea longissima, U. cavernosa and U. uncinulata.
  5. The only natural habitat of many species of saproxylic beetles – connected with dying trees and dead wood and also inner bark and touchwood. Amongst the Bialowieza Forest relicts there are species belonging to genus of saproxylic beetles which used to have more than 1,000 species in Central Europe. The most endangered are the ones connected to dead trees. Some of them are known in Poland only from the Bialowieza Forest. The larvae phase of these beetles (sometimes lasting several years) takes place in spruces either killed by bark beetles or felled by wind, recently died or heavily decayed. Their larvae feed on decaying phloem or xylem, mycelium of the fungi that colonize dead trees or they have a predatory lifestyle and feed on other small animals that colonize dead spruces (Gutowski and Buchholz 2000, Gutowski 2004, Gutowski et al. 2004). Amongst these insects there are rarities like: Rhysodes sulcatus, Boros schneideri, Pytho kolwensis (this species colonize only spruce), Cucujus cinnaberinus, Cucujus haematodes, Lacon lepidopterus. Saving the dead trees we protect a place for the larval phase of Buprestis splendens or Peltis grossa. . 
  6. The most important nesting site for rare woodpeckers, especially the Tree-toed woodpecker Picoides tridactylus. Woodpeckers excavate their nest holes every year and therefore they need a continuous supply of thick dead trees. The tree-toed woodpecker is four times rarer in the commercial part of the Białowieża Forest, where foresters fought against bark beetle by logging dead spruces than in the strict nature reserve of the Bialowieza National Park. It avoids the parts of the forest where forestry management occurs even if the management is with low intensity (Kajzer and Sobociński 2012). More than 60% of the nests of the tree-toed woodpecker in the Białowieża Forest are in spruces and 90% of them in dead spruces. The average diameter at breast height of the trees that this woodpecker excavate its nest holes is 37 cm (T. Wesołowski, unpublished data). 
  7. An abundant and diverse source of prey that is available for many years, for all species of woodpecker, including the rarest ones: White-backed woodpecker and tree-toed woodpecker. Black, white-backed and tree-toed woodpeckers often forage on dead wood (Walankiewicz et al. 2002). The latter, in 80% of cases, forage on dead spruces. These trees (standing or lying) harbour good and diverse prey base lasting for many years, because in the next phases of decomposition, they are colonized by different groups of invertebrates. The abundance of food influences the reproductive success of woodpeckers and the survival rate of their nestlings (Kajzer and Sobociński 2012).
  8. The most important nesting site for the Eurasian pygmy owl. A rare species of owl which is dependent on the presence of woodpecker nest holes. The Eurasian pygmy owl occupies almost exclusively woodpecker nest holes in dying trees. 
  9. Abundance of food for small carnivores (e.g. weasel) and rare owls (e.g. Eurasian pygmy owl) because dying spruces produce seeds very intensively. Seeds are an important food source for rodents that constitute the prey for carnivores and raptors.


What are the advantages of dead and decaying trees?

  1. Diversity of microhabitats (mosaics in the forest) increases because of the different phases of dying and decomposing wood, the area of uncovered soil, as well as speed and direction of the regeneration of the forest.
  2. The organic matter of logs break down and become gradually incorporated in the forest soil as a result of slow decomposition.
  3. Habitat for 230 species of macrofungi. They grow mainly on lying trunks with different phases of decomposition. Leaving dead spruces alone will give a long-term, suitable growing place for many species of Macromycetes connected with spruces, including extremely endangered ones and the ones known only from strictly protected areas of the Białowieża Forest.
  4. The habitat of many epixylic lichens is growing. That includes rare species of Calicium and Chaenotheca genus, half of which are listed in "Red List of extinct and threatened lichens in Poland" (Cieśliński et al. 2006). On decaying spruce wood one can find the extraordinary and rare lichen that contains the gilled mushroom of basidiomycotas division Lichenomphalia umbellifera.
  5. The number of many, but not very well-known in our country slime molds (Mycetozoa = Myxomycetes). Apart from the mountain areas, North-east of Poland is the area with highest abundance of these species. In the Bialowieża Forest 107 species of Mycetozoa were discovered until 2015. Studies in 2013-2015 showed a much higher frequency of occurrence and variety of species of Mycetozoa in plots that contained dead wood than in plots without dead wood, both in the Białowieża NP and other parts of BF (Drozdowicz 2014).
  6. Better conditions for germination of trees and many other vascular plants. Oak groves planted and cultivated in the Białowieża Forest by foresters will not replace the precious complex stage oak stands that were formed as a result of covering glades and abandoned fields (Bobiec 2013). Nowadays this sort of forest develops inside gaps that appeared after decay of spruce stands. Numerous logs of dead spruces lying on the ground facilitate the process of oak regeneration. As research done in the Bialowieza National Park has shown, the vast majority of young oaks appeared in the vicinity of spruce logs. It may be connected with animals, mainly jays and rodents, choosing those places to hide acorns (Bobiec et al. 2011, Smit et al. 2012) but also to the protective effects against herbivores of a tangle of fallen trees to larger oak saplings (Smit et al. 2012, van Ginkel et al. 2013).
  7. Dead wood is a substratum colonized by almost 50 vascular plants (Chećko i in. 2015). Spruce seeds germinate perfectly and seedlings develop much faster on trunks of lying and decomposing ”nursing” logs of spruce. 
  8. On the forest floor there are many reservoirs of water which is released and stored in lying spruce logs, as a result of decomposition of the wood by bacteria and fungi. Trees and other plants need this water for germination and growth. 
  9. Seedlings and young trees are much better protected against grazing and browsing because it is difficult for wild ungulates to get through a tangle of lying trunks and deer are afraid to feed in such a surrounding especially if there are wolves (Kuijper et al. 2013, 2015) and lynxes (Podgórski et al. 2008) close by. As a result, fallen trees create zones with lower ungulate browsing intensity and higher natural regeneration of trees (Kuijper et al. 2013, 2015). 
  10. Habitats of very rare species of beetles such as Phryganophilus ruficollis or Ceruchus chrysomelinus. Thick trunks that are lying, heavily decayed, and covered by moss, damp and shaded by the forest regenerating around, become a place of development for such rare beetles (Gutowski et al. 2004).
  11. There are numerous damp hides that offer feeding grounds with an abundant supply of invertebrates and wintering places for many species of amphibians. 
  12. Dead wood has a positive impact on the number and structure of small mammal communities (Loeb 1999) and survival of small animals during very cold and very hot days. 
  13. It creates good conditions for hunting and resting for lynx. Lying logs give lynx a good cover which is essential for efficient hunting and hiding their prey and they provide them with security during daily rest (Podgórski et al. 2008).
  14. Lying logs create a communication network on the ground which helps terrestrial animals in moving around and hunting. They are used by various animals such as dormice, weasels, stoats, martens, polecats, foxes, lynxes and wolves.


Dr. Andrzej Bobiec
Department of Agroecology, Faculty of Biology and Agriculture, University of Rzeszów

Dr. Lech Buchholz
Polish Entomological Society

Dr. Marcin Churski
Mammal Research Institute Polish Academy of Sciences in Białowieża

Dr. Przemysław Chylarecki
Museum and Institute of Zoology Polish Academy of Sciences in Warsaw

Prof. Dr. Wiesław Fałtynowicz
Institute of Environmental Biology, Faculty of Biological Sciences, University of Wrocław

Prof. Dr. Jerzy M. Gutowski
Forest Research Institute

Dr. Bogdan Jaroszewicz
Białowieża Geobotanical Station, Faculty of Biology, University of Warsaw

Dr. Dries P.J. Kuijper
Mammal Research Institute Polish Academy of Sciences in Białowieża

Dr. Anna Kujawa
Institute for Agricultural and Forest Environment Polish Academy of Sciences in Poznań, Research Station in Turwia

Dr. Romuald Mikusek
Stolowe Mountains National Park

Dr. Robert W. Mysłajek
Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw

Dr. Sabina Nowak
Association for Nature “Wolf”

Paweł Pawlaczyk, MSc
Naturalists' Club

Dr. Tomasz Podgórski
Mammal Research Institute Polish Academy of Sciences in Białowieża

Dr. Wiesław Walankiewicz
Department of Zoology, Institute of Biology, Siedlce University of Natural Sciences and Humanities

Prof. Dr. Tomasz Wesołowski
Laboratory of Forest Biology, Faculty of Biological Sciences, University of Wrocław

Dr. Karol Zub
Mammal Research Institute Polish Academy of Sciences in Białowieża



  • Beudert B., Bässler C., Thorn S., Noss R., Schröder B., Dieffenbach-Fries H., Foullois N., Müller J. 2015. Bark beetles increase biodiversity while maintaining drinking water quality. Conservation Letters 8 (4): 272-281.
  • Bobiec A. 2013. History and dynamics of oak-lime-hornbeam forests in the Bialowieza National Park. Wiadomości Botaniczne 57 (3/4): 17-39.
  • Bobiec A., Bobiec M. 2012. Influence of spruce decline in stands of the Białowieża National Park on natural oak regeneration. Sylwan 156 (4): 243-251.
  • Bobiec A., Jaszcz E., Wojtunik K. 2011. Oak (Quercus robur L.) regeneration as a response to natural dynamics of stands in European hemiboreal zone. European Journal of Forest Research 130: 785-797.
  • Buchholz L., Ossowska M. 1995. Entomofauna martwego drewna - jej biocenotyczne znaczenie w środowisku leśnym oraz możliwości i problemy ochrony. Przegląd Przyrodniczy 6 (3/4): 93-105.
  • Chećko E., Jaroszewicz B., Olejniczak K., Kwiatkowska-Falińska A.J. 2015. The importance of coarse woody debris for vascular plants in temperate mixed deciduous forests. Canadian Journal of Forest Research 45: 1154-1163.
  • Cieśliński S. 2003. Atlas rozmieszczenia porostów (Lichenes) w Polsce północno-wschodniej. Phytocoenosis 15(N.S.), Suppl. Cartographiae Geobotanicae 15: 430 ss.
  • Cieśliński S., Czyżewska K., Klama H., Żarnowiec J. 1996. XIII. Epiphytes and epiphytism W: J.B. Faliński, W. Mułenko (red.). Cryptogamous plants in the forest communities of Białowieża National Park (Project CRYPTO 3). Phytocoenosis 8 (N.S.) Archivum Geobotanicum 6. Warszawa-Białowieża.
  • Cieśliński S., Czyżewska K., Fabiszewski, J. 2003. Red List of extinct and threatened lichens in Poland. Monografie Botaniczne 91: 13-49.
  • Čižkova P., Svoboda M, Křenova Z. 2011. Natural regeneration of acidophilous spruce mountain forests in non-intervention management areas of the Šumava National Park – the first results of the Biomonitoring project. Silva Gabreta 17 (1): 19-35.
  • Cornulier T., Yoccoz N.G., Bretagnolle V., Brommer J.E., Butet A., Ecke F., Elston D.A., Framstad E., Henttonen H., Hörnfeldt B., Huitu O., Imholt Ch., Ims R.A., Jacob J., Jędrzejewska B., Millon A., Petty S.J., Pietiäinen H., Tkadlec E., Zub K., Lambin X. 2013. Europe-wide dampening of population cycles in keystone herbivores. Science 340 (6128): 63-66.
  • Drozdowicz A. 2014. Śluzowce Puszczy Białowieskiej. Białowieski Park Narodowy, Białowieża.
  • Fałtynowicz W. 2003. The lichens, lichenicolous and allied fungi of Poland – an annotated checklist. W. Szafer Institute of Botany Polish Academy of Sciences, Kraków: 435 ss.
  • Fahse L., Heurich M. 2011. Simulation and analysis of outbreaks of bark beetle infestations and their management at the stand level. Ecological Modelling, 222: 1833-1846.
  • Fleituch T. 2010. Breakdown of particulate organic matter and functioning of stream ecosystems under anthropogenic stress. Studia Naturae 57: 1-154.
  • Grodzki W., Jakus J., Lajzova E., Sitkova Z., Maczka T., Škvarenina J. 2006. Effects of intensive versus no management strategies during an outbreak of the bark beetle Ips typographus (L.) (Col.: Curculionidae, Scolytinae) in the Tatra Mts. in Poland and Slovakia. Annals of Forest Science 63: 55-61.
  • Gutowski J.M. 2004. Kornik drukarz – gatunek kluczowy. Parki Narodowe 1: 13-15.
  • Gutowski J.M., Buchholz L. 2000. Forest insects ñ threats and proposals of protection. Wiadomości Entomologiczne 18 (Supl. 2): 43-72.
  • Gutowski J.M., Krzysztofiak L. 2005. Directions and intensity of migration of the spruce bark beetle and accompanying species at the border between strict reserves and managed forests in north-eastern Poland. Ecological Questions 6: 81-92.
  • Gutowski J.M. (red.), Bobiec A., Pawlaczyk P., Zub K. 2004. Drugie życie drzewa. WWF Polska, Warszawa – Hajnówka.
  • Jonášová M., Matìjková I. 2007. Natural regeneration and vegetation changes in wet spruce forests after natural and artificial disturbances. Canadian Journal of Forest Research 37 (10): 1907–1914.
  • Jonášová M., Prah K. 2004. Central-European mountain spruce (Picea abies (L.) Karst.) forests: regeneration of tree species after a bark beetle outbreak. Ecological Engineering 23: 15-27.
  • Jonášová M., Prah K. 2008. The influence of bark beetles outbreak vs. salvage logging on ground layer vegetation in Central European mountain spruce forests. Biological Conservation 141: 1525-1535.
  • Kajzer K., Sobociński W. 2012. Raport końcowy podsumowujący temat badawczy „Określenie czynników determinujących populacje dzięcioła białogrzbietego Dendrocopos leucotos  i dzięcioła trójpalczastego Picoides tridactylus w Puszczy Białowieskiej”. DGLP, Warszawa.
  • Karasiński D., Kujawa A., Szczepkowski A., Wołkowycki M. 2010. Plan ochrony gatunków grzybów. W: Plan Ochrony Białowieskiego Parku Narodowego na lata 2011-2030. Białowieski park Narodowy, Białowieża. [maszynopis].
  • Klama H. 2002. Distribution patterns of liverworts in natural forest communities. University of Bielsko-Biała, Bielsko-Biała, 278 ss.
  • Kuijper D.P.J., de Kleine C., Churski M., van Hooft P., Bubnicki J., Jędrzejewska B. 2013. Landscape of fear in Europe: wolves affect spatial patterns of ungulate browsing in Białowieża Primeval Forest, Poland. Ecography 36: 1263-1275.
  • Kuijper, D.P.J., Bubnicki, J.W., Churski, M., Mols, B., van Hooft, P. 2015. Context-dependence of risk effects: wolves and tree logs create patches of fear in an old-growth forest. Behavioral Ecology 26: 1558-1568.
  • Lehnert L.W., Bässler C., Brandl R., Burton P.J., Müller J. 2013. Highest number of indicator species is found in the early successional stages after bark beetle attack. Journal for Nature Conservation 21: 97-104.
  • Loch J., Chwistek P., Wężyk P., Małek S., Pająk M. 2001. Natural regeneration vs tree planting in the subalpine spruce forest Plagiothecio-Piceetum tatricum of the Gorce National Park. Nature Conservation 58: 5-15.
  • Loeb S.C. 1999. Responses of small mammals to coarse woody debris in a Southeastern Pine Forest. Journal of Mammalogy 80: 460-471.
  • Mikusek R. 2009. Biologia rozrodu, pokarm i behawior w okresie lęgowym sóweczki (Glaucidium passerinum ) w Górach Stołowych. Praca doktorska. Park Narodowy Gór Stołowych, Kudowa–Zdrój.
  • Montano V., Bertheau C., Doležal P., Krumböck S., Okrouhlík J., Stauffer Ch., Moodley Y. 2016. How differential management strategies affect Ips typographus L. dispersal. Forest Ecology and Management 360: 195-204.
  • Müller J., Bußler H., Goßner M., Rettelbach T., Duelli P. 2008. The European spruce bark beetle Ips typographus (L.) in a national park - from pest to keystone species. Biodiversity and Conservation 17: 2979-3001.
  • Müller J., Noss R.F., Bussler H., Brandl R. 2010. Learning from a „benign neglect strategy” in a national park: Response of saproxylic beetles to dead wood accumulation. Biological Conservation 143: 2559-2569.
  • Panek E., Romański M. 2010a. Śluzowce (Mycetozoa). W: Krzysztofiak L. (red.), Śluzowce Myxomycetes, grzyby Fungi i mszaki Bryophyta Wigierskiego Parku Narodowego. Wyd. Stowarzyszenie Człowiek i Przyroda, Suwałki, s. 4-85.
  • Panek E., Romański M. 2010b. Śluzowce północno-wschodniej Polski – przewodnik terenowy. Wyd. Stowarzyszenie Człowiek i Przyroda, Suwałki, 56 ss.
  • Podgórski T., Schmidt K., Kowalczyk R., Gulczyńska A. 2008. Microhabitat selection by Eurasian lynx and its implications for species conservation. Acta Theriologica 53: 97-110.
  • Smit C., Kuijper D.P.J., Prentice D., Wassen M., Cromsigt J.P.G.M. 2012. Coarse woody debris facilitates oak recruitment in Białowieża Primeval Forest, Poland. Forest Ecology and Management 284: 131-141.
  • van Ginkel H.A.L., Kuijper D.P.J., Churski M., Zub K., Szafrańska P., Smit C. 2013. Safe for saplings not safe for seeds: Quercus robur recruitment in relation to coarse woody debris in Białowieża Primeval Forest, Poland. Forest Ecology and Management 304: 73-79.
  • Walankiewicz W., Czeszczewik D., Mitrus C., Bida E. 2002. Snag importance for woodpeckers in deciduous stands of the Białowieża Forest. Notatki Ornitologiczne 43: 61-71.

Our profile on Facebook Our profile on YouTube